Operation manual

SERIES IZ16E-600

Battery-powered Length Measuring System with RF System 868 MHz

- Large 7-digit LCD-Display, digit height 14 mm
- With sign and special signs
- Battery status indicator
- ° “-symbol for angle measurement
- Fraction display in inch mode
- Internal or external battery case
- Resolution up to 0.01 mm
- Display in inch mode „0.001 Inch“
- Tool-offset
- Simple installation (Snap-In-Housing)
- Indicator with integrated RF module 868 MHz
- Auto-Power-Off Function
Content

1 General... 4
 1.1 Information Operation Manual 4
 1.2 Explanation of Symbols 4
 1.3 Statement of Warranties 5
 1.4 Demounting and Disposal 5
2 Safety ... 6
 2.1 General Cause of Risks 6
 2.2 Personal Protective Equipment 6
 2.3 Conventional Use ... 7
3 Transport and Storage .. 8
 3.1 Safety instructions for transport, unpacking and loading 8
 3.2 Handling of Packaging Material 8
 3.3 Check of Transport .. 8
 3.4 Storage ... 8
4 Product Features ... 9
 4.1 Radio Transmission Overview 10
5 Applications .. 11
 5.1 Magnetic measurement 11
 5.1.1 Direct Distance Measurement 11
 5.1.2 Angle Measurement 0...<360° 11
 5.2 Measurement with pole ring 12
 5.2.1 Indirect Distance Measurement 12
 5.2.2 Angle Measurement 0...360° 12
6 Technical Data ... 13
 6.1 Position Indicator IZ16E 13
 6.1.1 Identification ... 13
 6.1.2 Dimensions .. 13
 6.1.2.1 Front View / valid for all versions 13
 6.1.2.2 Version IZ16E-600-6-xx,x-0 14
 6.1.2.3 Version IZ16E-600-6-xx,x-1 14
 6.1.3 Technical Data IZ16E 15
 6.1.4 Power supply / Battery change 16
 6.2 868MHz Specification 17
 6.3 Magnetic Sensor MS20.25 18
 6.3.1 Dimensions of the Magnetic Sensor 18
 6.3.2 Technical Data of the Magnetic Sensor 18
 6.4 Magnetic Tape MB20-25 19
 6.4.1 Components .. 19
 6.4.2 Handling ... 20
 6.4.3 Identification ... 20
 6.4.4 Dimensions of the Magnetic Tape 20
 6.4.5 Technical Data Magnetic Tape 21
 6.4.6 Chemical resistance of the magnetic tape 21
7 Type Designation .. 22
 7.1 Available Variants ... 22
8 Type Designation Magnetic Tape 23
 8.1 Available Variants ... 23
9 Installation and Initial Start-up 24
 9.1 Operational Environment 24
 9.2 Interferences ... 25
 9.3 Installation of the Indicator 25
9.4 Activating the device ... 25
9.5 Installation of the magnetic sensor ... 26
9.6 Installation of the magnetic tape ... 27
 9.6.1 Processing note for the bonding ... 27
 9.6.2 Cutting and Sticking ... 28
10 Structure and Function .. 29
 10.1 Overview-Display ... 29
 10.2 Key-Overview ... 30
 10.3 Parameter Level ... 31
 10.3.1 Activate the Parameter Level ... 31
 10.3.2 Election of the Decade .. 31
 10.3.3 Change Value ... 31
 10.3.4 Change Sign ... 31
 10.3.5 Leave Parameter Level ... 31
 10.3.6 Parameter list ... 32
 10.4 Initialization Level ... 33
 10.4.1 Calibration ... 33
 10.4.2 Load the Default Parameters and simultaneous Calibration 33
 10.5 Function at the Operator Level .. 34
 10.5.1 Actual Value to Reference .. 34
 10.5.2 Switching incremental or absolute 34
 10.5.3 Activation Offset Measurements 34
 10.5.4 Fraction Display in the Inch-Mode 34
 10.6 Radio Transmission .. 35
 10.6.1 Necessary Adjustments .. 35
 10.6.2 RF- Addressing ... 35
 10.6.3 Manual Radio Transmission (P01 = 1x) 35
 10.6.4 Automatic Radio Transmission (P01 = 0x) 35
 10.6.5 RF- Reception Control ... 35
 10.6.6 RF- Transmission Protocol .. 36
 11 Accessories .. 37
 11.1 RF-MODUL 868MHz RS232 ... 37
 11.2 RF-MODUL 868MHz USB .. 38
 11.2.1 Driver Installation USB- Stick 39
 11.3 Battery Holder ... 40
 11.4 Cover Band individual ... 41
 11.5 Aluminum Guiding Rail .. 41
 11.6 Guiding Wagon for Guiding Rail 41
 11.7 Magnetic Tape End Cap .. 42
 12 Interferences ... 43
 12.1 Safety ... 43
 12.2 Restarting after fault Clearance .. 43
 13 Maintenance ... 44
 14 Cleaning ... 44
 15 Index ... 45
1 General

1.1 Information Operation Manual

The manual contains important information regarding the handling of the indicator. For Your own safety please note all safety warnings and instructions.

Precondition for safe operation is the compliance with the specified safety and handling instructions. Moreover, observe the existing local accident prevention regulation and general safety rules.

Please read the operation manual carefully before starting to work. The manual should be kept accessible at anytime. The illustrations in the manual are for better representation of the facts they are not necessarily to scale and can be slightly different to the actual construction.

1.2 Explanation of Symbols

Warning notices are characterised by symbols in the operation manual. The notes will be introduced by signal words to express the magnitude of the danger.

Follow these advices in order to avoid accidents and injuries to persons and property.

Warning notices

<table>
<thead>
<tr>
<th>![Symbol]</th>
<th>DANGER!</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Symbol]</td>
<td>... Adverts to direct dangerous situations that can lead to death or severe injuries.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>![Symbol]</th>
<th>CAUTION!</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Symbol]</td>
<td>... Adverts to potentially dangerous situations that can lead to death or severe injuries.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>![Symbol]</th>
<th>ATTATIONI</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Symbol]</td>
<td>... Adverts to potentially dangerous situations that can lead to damages on property.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>![Symbol]</th>
<th>ADVERTI</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Symbol]</td>
<td>...highlights helpful hints and recommendations for efficient and failure-free operation.</td>
</tr>
</tbody>
</table>

Specific safety instructions:

<table>
<thead>
<tr>
<th>![Symbol]</th>
<th>DANGER!</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Symbol]</td>
<td>…marks perilous situations by electricity. By non-observance of the safety instructions the possibilities of death or severe injuries exist. The operations have to be carried out only by an electrician.</td>
</tr>
</tbody>
</table>
Tips and recommendations:

<table>
<thead>
<tr>
<th></th>
<th>Note!</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Here you can see Highlights, useful tips, information and recommendations for efficient and trouble-free operation.</td>
</tr>
</tbody>
</table>

1.3 Statement of Warranties

The warranty conditions are in a separate document.

Guarantee

The producer guarantees the functional capability of the process engineering and the selected parameter. The period of warranty is one year and begins with the date of delivery.

1.4 Demounting and Disposal

Unless otherwise authorized, dispose the item considering the safety instructions.

Before demounting

- Disconnect the power supply
- Secure against re-start
- Disconnect supply lines physically and discharge remaining energy
- Dispose operating supplies with respect to the environment

Disposal

Recycle the decomposed elements:

- Scrap metal elements
- Electronic components in electronic scrap
- Recycle plastic parts
- Dispose the rest of the components according to their material consistence

ATTENTION!

Wrong disposal ➔ damage caused to the environment!

Electronic waste, electronic components, lubricants and operating supplies are liable to treatment of hazardous waste. Only approved specialized companies should perform disposal.

Local authorities and waste management facilities provide information about environmentally suitable disposal.
2 Safety

ADVERT
Please read the operation manual carefully, before using the device!
Observe the Installation instructions!
In case of damage caused by failure of these operating instructions the
warranty expires.

ELGO Electronic GmbH & Co. KG and its subsidiaries are not liable
for any damage at persons, property or asset caused by defective
material on the device and / or it’s associated.
We take no responsibility for consequential damage!

The operator is obliged to appropriate security-related measures and
implement.

The Commissioning may only be performed by qualified and by the
operator authorized and trained personnel.

2.1 General Cause of Risks
This chapter gives an overview about all important safety aspects to guarantee an optimal protection of
employees. (See at chapter 9)
Non-observance of the instructions mentioned in this operation manual can result in hazardous situations.

2.2 Personal Protective Equipment
Employees should wear protective clothing during installation of the device to minimize the risk of accidents.

Therefore:

Change into protective clothing before beginning the work process. Also observe any labels in the operating
area regarding protective clothing.

Protective clothing:

- Safety working clothing
 - is close-fitting
 - is tear proof
 - has tight sleeves without distant parts

 Also wear no rings, necklaces or other jewellery.

- Protective gloves
 - For protecting the hands against abrasion and cuts.
2.3 Conventional Use

The indicator IZ16 is for the limited purpose as described in this manual:

The IZ16E ELGO length measurement system is constructed for measuring and displaying distances.

CAUTION!

Danger through non-conventional use! Non-intended use and non-observance of this operation manual can lead to dangerous situations. Therefore:

- Use IZ16E only as described
- Strictly follow this manual

Avoid in particular:

Remodelling, refitting or changing of the device or parts of it with the intention to alter functionality or scope of the position indicator.

ELGO is not liable for any damages resulting from improper use of the product. The Operator is liable for all damages during non-conventional use.
3 Transport and Storage

3.1 Safety instructions for transport, unpacking and loading

ATTENTION!
Professional transport only. Do not throw, hit or fold the package.

3.2 Handling of Packaging Material
Adverts for proper disposal refer to 1.4.

3.3 Check of Transport
Examine delivery immediately after receiving for completeness and transport damages.

In case of externally recognizable transport damages:
- Do not accept the delivery or do accept under reserve
- Note extent of damages on the transportation documents or on the delivery note
- File complaint immediately

ADVERT!
Claim any damages you recognize as soon as possible. The claims for damage must be filed in the lawful reclaim periods.

3.4 Storage
Store device only under following conditions:
- Do not store outside
- Keep dry and dust-free
- Do not expose to aggressive media
- Protect from direct sun light
- Avoid mechanical shocks
- Storage temperature: 20 to + 50 °C
- Relative humidity: 60% non-condensing
- Inspect packages regularly if stored for an extensive period of time (> 3 months)
4 Product Features

The length measuring system IZ16E is a combination of an external magnetic sensor that is connected via a drag-chain suitable cable to the display device. For the measurement a coded magnetic tape, which provides the sensor with the necessary information (current position), is glued along the distance that has to be measured. Therefore, the sensor is installed parallel without contact to the magnetic tape and because of that the system is wear less.

The external sensor with its protection class is resistant for any type of dust, dirt and water-jet and with its compact installation size it is easy to integrate in existing or new constructions.

The position indicator has extensive possibilities of parameterization (see section 10.3.6) and can be easily adapted to different applications. The basic functions, which are available in the standard-software, cover a wide range of applications. There are also customized versions (on request) available for special types of machines.

For the installation no special tools are needed, there are no wire or electrical connections required. The length measuring system IZ16E is therefore particularly suitable for e.g. mounting on movable slides and stop systems, since no power supply cables are to be accompanied. The new snap-in mounting (snap-in-housing) allows an easy installation in a defined panel cut out e.g. in a front panel.

<table>
<thead>
<tr>
<th>i</th>
<th>ADVERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the power-off mode the movements or adjustments of the magnetic sensor are not covered! A reference has to be conducted after the start of operation (at a required mechanical position, the indicator is to set e.g. ZERO)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>i</th>
<th>ADVERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>The resolution of the measurement system is 0.01 mm! All settings of the multiplication factor refer to this resolution.</td>
<td></td>
</tr>
</tbody>
</table>
4.1 Radio Transmission Overview

The unit IZ16E-600 [SLAVE] is equipped with an 868MHz radio module (ISM band) for the transfer of the current actual value (display value).

Accessories are an 868MHz transceiver [MASTER] with RS232 or USB stick, which are precisely matched to the IZ16E-600.

The two-way radio link serves a cable replacement between MASTER and SLAVE:

The IZ16E-600 and the 868MHz transceivers are equipped with powerful, integrated ceramic antennas. External antennas are not necessary.

An important feature of the wireless modules, used here, is the bi-directional data transfer with CRC checksum, with up to 5-times repeat of not quitted Data messages and a display of a receipt.

Under optimal conditions, an operating range of up to 200 meters is possible (see also 868 MHz specifications in Section 6.2).
5 Applications

5.1 Magnetic measurement

5.1.1 Direct Distance Measurement

The magnetic tape is glued on a solid ground (e.g. machine base) along the measuring distance.

Example 1) Indicator [mm], resolution 0.01 mm
 -> P02=0 / P03=2 / P08=1,0000

Example 2) Indicator [m], resolution 0.001 m
 -> P02=2 / P03=3 / P08=0,01

Example 3) Indicator [Inch], resolution 0.001 Inch
 -> P02=1 / P03=fixiert=3 / P08=1,0000

5.1.2 Angle Measurement 0...<360°

The magnetic tape is glued on a solid ground (e.g. angle stop) along the measuring distance.

To parameterize the indicator or to calculate the multiplication factor a low angle of 90° is very suggestive, the reason is that the actual measurement distance (=angle) is dependent on the bending radius of the magnetic tape.

Example: Indicator [°], resolution 0.01°
 -> P02=3 / P03=2 / P08=1,0000 / P09=0

a) Start to the desired mechanical Zero point, then set the indicator to the reference value.

b) Start to the defined angle position (e.g. low angle, 90°) and note the actual value at the indicator (e.g. 471,20)

c) Calculate and enter the multiplication factor:

P08 = Angle / Display Value

(e.g. P08 = 90° / 471,20 = 0,1910)
 -> P02=3 / P03=2 / P08=0,1910
5.2 Measurement with pole ring

5.2.1 Indirect Distance Measurement

A pole ring / magnet wheel is mounted on a rotating axis (E.g. motor shaft).

Example: Spindle drive with gear box, the pole ring at the engine, indicator [mm], resolution 0.01mm, pole ring (D=48mm) with 60 poles per ≈ 2.5 mm, transmission reduction = 10:1, Distance per spindle revolution = 3mm

\[P02 = 0 \div P03 = 2 \div P08 = \]

Displayed Value / \(R_{\text{magnet wheel}} \) = Number of poles * 250
(e.g.: 60 * 250 = 150.00 mm)

Measuring Distance / \(R_{\text{magnet wheel}} \) = 3 mm / 10 = 0.3 mm

\[P08 = \frac{\text{Measuring Distance} / R_{\text{magnet wheel}}}{\text{Displayed Value} / R_{\text{magnet wheel}}} = 0.002 \]

\[P02 = 0 \div P03 = 2 \div P08 = 0.002 \]

5.2.2 Angle Measurement 0...360°

A pole ring / magnet wheel is mounted on a rotating axis.

Example: Angle measurement, Indicator [°], resolution 0.1°, pole ring (D=48mm) with 60 Poles per ≈ 2.5 mm

\[P02 = 3 \div P03 = 1 \div P08 = \]

\[P08 = \frac{(360° \div \text{resolution})}{(\text{Number of poles} \times 250)} \]
(e.g.: (360° / 0.1°) / (60 * 250) = 3600 / 15000 = 0.24

\[P02 = 3 \div P03 = 1 \div P08 = 0.2400 \]
6 Technical Data

6.1 Position Indicator IZ16E

6.1.1 Identification
The label is helpful for the identification of the unit. It is located on the housing of the position indicator. It provides information about the exact type designation (= order reference; see model code, section 7) with the corresponding item number. Furthermore, the label contains a unique, traceable device number and production date. These data are always necessary information if you contact ELGO.

6.1.2 Dimensions
6.1.2.1 Front View / valid for all versions

Front panel cut out: (W x H) = 93mm x 67mm
Appropriate front panel thickness: 1.0 / 1.5 / 2.0 / 2.5 mm (with mounted seal) 2.5 / 3.0 / 3.5 mm (without seal)
6.1.2.2 Version IZ16E-600-6-xx,x-0

6.1.2.3 Version IZ16E-600-6-xx,x-1
Technical Data IZ16E

Position Indicator IZ16E

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCD-Display</td>
<td>7 decades (digit height 14mm) With sign, battery status and measurement units</td>
</tr>
<tr>
<td>Measuring unit</td>
<td>mm, m, Inch or °</td>
</tr>
<tr>
<td>Perspective</td>
<td>12 o’clock</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Foil with Softkeys</td>
</tr>
<tr>
<td>Measuring principle</td>
<td>Magnetic, theoretically absolute</td>
</tr>
<tr>
<td>Measurement</td>
<td>linear or rotative</td>
</tr>
<tr>
<td>Power supply</td>
<td>1.5 V or 3.0 V (+24V on request)</td>
</tr>
<tr>
<td>Power consumption</td>
<td>< 1 mA with 1.5V</td>
</tr>
<tr>
<td>Battery life</td>
<td>1…3 years (depending on the battery-type)</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>0 °C … + 50 °C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-10 °C … +60 °C</td>
</tr>
<tr>
<td>Humidity</td>
<td>Max. 80 %, non-condensing</td>
</tr>
<tr>
<td>Velocity</td>
<td>Max. 4 m/s</td>
</tr>
<tr>
<td>Housing</td>
<td>Norm panel housing, ABS plastic, black</td>
</tr>
<tr>
<td>Housing dimensions</td>
<td>W x H = 96 x 72 mm</td>
</tr>
<tr>
<td>Installation depth</td>
<td>30 mm -> depending on the version, see section 6.1.2</td>
</tr>
<tr>
<td>Front panel cut out</td>
<td>W x H = 93 x 67 mm</td>
</tr>
<tr>
<td>Protection class front</td>
<td>IP 54 (when installed with sealing)</td>
</tr>
<tr>
<td></td>
<td>IP 43 (when installed without sealing)</td>
</tr>
<tr>
<td>Protection class back</td>
<td>IP 40</td>
</tr>
</tbody>
</table>
6.1.4 Power supply / Battery change

ADVERT
For a long operating time, the use of commercially branded batteries is recommended.

If all the battery icons on the LCD-Display are extinguished, a battery change should be made as soon as possible.

By changing the batteries strictly observe the polarity, take for orientation the markings on the battery-case!

All data and parameters are obtained at the battery change, apart from the current actual value.

All components of the series **IZ16E-xxx-6-xx,xx** have a pluggable 2-pole screw clamp (1.5mm²) for connection with an external battery with 1.5V or 3.0V (not supplied; as an accessory available) or as an external stabilized power supply with 1.5V / 3.0V or 24V*.

Following battery-holder configurations are possible:

1x Battery Type C or Type D (1.5V)
2x Battery Type AA / C / D parallel (1.5V)
2x Battery Type AA / C / D connected in series (3.0V)

Pin Assignment for plug:

<table>
<thead>
<tr>
<th>PIN</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0V / GND</td>
</tr>
<tr>
<td>2</td>
<td>+1.5V / +3.0V / +24V*</td>
</tr>
</tbody>
</table>

(* only on request)
6.2 868MHz Specification

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>Up to 200 m (in line of sight)</td>
</tr>
<tr>
<td>HF- Data rate</td>
<td>38 kbps</td>
</tr>
<tr>
<td>Output Rating</td>
<td>typ. 2 dBm e.i.r.p. (10 dBm at 50Ω)</td>
</tr>
<tr>
<td>Input Sensitivity</td>
<td>Up to -102 dBm (-110 dBm at 50Ω)</td>
</tr>
<tr>
<td>Frequency Range</td>
<td>863 – 868.6 MHz</td>
</tr>
<tr>
<td>Channel Spacing</td>
<td>50 kHz</td>
</tr>
<tr>
<td>Kind of Modulation</td>
<td>2-FSK, MSK</td>
</tr>
<tr>
<td>Antenna</td>
<td>integrated Ceramic antenna</td>
</tr>
<tr>
<td>Topology</td>
<td>Point to Point</td>
</tr>
<tr>
<td>Transmission</td>
<td>- Bi-directional</td>
</tr>
<tr>
<td></td>
<td>- Half-duplex</td>
</tr>
<tr>
<td></td>
<td>- with receipt</td>
</tr>
<tr>
<td></td>
<td>- with CRC- Checksum</td>
</tr>
<tr>
<td></td>
<td>- with up to 5-times repeat of not quitted Data messages</td>
</tr>
<tr>
<td>Addressing</td>
<td>2 Byte Address range, max. 64000 different Addresses</td>
</tr>
<tr>
<td>Conformity (Europe)</td>
<td>EN 300220-1, EN 301489-1/-3, EN 60950-1, EN 50371</td>
</tr>
</tbody>
</table>
6.3 Magnetic Sensor MS20.25

6.3.1 Dimensions of the Magnetic Sensor

6.3.2 Technical Data of the Magnetic Sensor

<table>
<thead>
<tr>
<th>Magnetic Sensor MS20.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pole length</td>
</tr>
<tr>
<td>Sensor cable length</td>
</tr>
<tr>
<td>Sensor cable</td>
</tr>
<tr>
<td>Housing</td>
</tr>
<tr>
<td>Protection class</td>
</tr>
<tr>
<td>Operating temperature</td>
</tr>
<tr>
<td>Storage temperature</td>
</tr>
<tr>
<td>Mounting position</td>
</tr>
<tr>
<td>Bending Radius (Cable)</td>
</tr>
<tr>
<td>Gap Sensor/Tape</td>
</tr>
<tr>
<td>Influence of external magnetic fields</td>
</tr>
</tbody>
</table>
6.4 Magnetic Tape MB20-25

The magnetic tape contains the necessary digital information needed for linear length measurement using an ELGO length measuring systems. Basically a distinction is made between incremental and absolute measuring. The incremental measuring system consists of reading electronic, which is scanning north and south poles on the magnetic tape and is creating a Sine and Cosine signal.

These signals are electronically interpolated, the resolution of the measuring system results of the interpolation rate and the pole length.

6.4.1 Components

In the standard case, the magnetic tape is delivered as described. It is installed by gluing it to the respective mounting surface.

The magnetic tape consists of 2 pre-assembled components (see Figure 1):

- A magnetized, flexible plastic tape (Pos. 3), which is connected with a magnetically conductive steel tape as inference band (Pos. 4) and is supplied with an adhesive tape (Pos. 5).
- A magnetized permeable cover tape (Pos. 1), which serves for the mechanical protection of the plastic tape (not required for the measurement) and is supplied with an adhesive tape (Pos. 2).

Therefore a divergent tape structure and scope of delivery is also possible. The cover tape is also available separately.
6.4.2 Handling

In order to avoid tension in the tape, it must not be stretched, compressed or twisted. It should be stored with the magnetized plastic tape to the outside (see Figure 2), the minimum bending radius must be noted here (see section 6.4.5).

Figure 2: Handling

6.4.3 Identification

The tape is characterized by continuous with a unique serial number and type of tape. Only the scope of delivery (see section 8, “Option”) is not apparent on the printing.

6.4.4 Dimensions of the Magnetic Tape

A) Magnetic Tape Set: MB20-25-10-1-R (Standard- Delivery)

Consisting of the basic components:

B) Magnetic tape: MB20-25-10-1-R-C (without cover band)

C) Cover band: SB-20-10-01-14404 (AB10)
6.4.5 Technical Data Magnetic Tape

Magnetic tape MB20-25-10-1-R

<table>
<thead>
<tr>
<th>Coding</th>
<th>Incremental, single track</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pole length</td>
<td>2.5mm</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>0 °C ... +50 °C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>Short term: -10 °C ... +60 °C Medium term: 0 °C ... +40 °C Long term: +18 °C</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>Max. 95 %, non-condensing</td>
</tr>
<tr>
<td>Accuracy at 20°C in mm</td>
<td>+/- (0.025 + 0.02 x L[m])</td>
</tr>
<tr>
<td></td>
<td>(L = measuring length in meter)</td>
</tr>
<tr>
<td>Thermal expansion</td>
<td>ΔL[m] = L[m] x α[1/K] x Δϑ[K]</td>
</tr>
<tr>
<td></td>
<td>(L = tape length in meter, Δϑ = relative temperature change)</td>
</tr>
<tr>
<td>Linear expansion coefficient</td>
<td>α ≈ 16 x 10⁻⁶ 1/K</td>
</tr>
<tr>
<td>Bending Radius</td>
<td>min. 150 mm</td>
</tr>
<tr>
<td>Available lengths</td>
<td>32m (up to 70m on request)</td>
</tr>
<tr>
<td>Weight of the magnetic tape</td>
<td>ca. 62 g/m (inclusive adhesive tape + protective sheet)</td>
</tr>
<tr>
<td>Weight of the cover tape</td>
<td>ca. 19 g/m (inclusive adhesive tape + protective sheet)</td>
</tr>
<tr>
<td>Influence of external magnetic fields</td>
<td>External magnetic fields are not allowed to exceed 64 mT (640 Oe; 52 kA/m) at the magnetic tape surface, because it can destroy and damage the magnetic tape code.</td>
</tr>
<tr>
<td>Protection class</td>
<td>IP67</td>
</tr>
</tbody>
</table>

6.4.6 Chemical resistance of the magnetic tape

Chemicals that show little or no impact:
- Formic acid
- Cotton oil
- Formaldehyde 40%
- Glycerol 93°C
- Linseed oil
- Soybean oil
- Petroleum
- N-Hexane
- Lactic acid

Chemicals that show weak to moderate effects:
- Acetone
- Petrol
- Acetic acid 20%...30%
- Oleic acid
- Acetic acid, glacial acetic acid
- Kerosene
- Acetylene
- Steam
- Isopropyl ether
- Stearic acid 70°C
- Seawater
- Ammonia
- Turpentine
- Hydrochloric acid 37%, 93°C

Chemicals that show a strong impact:
- Benzene
- Nitric acid
- Turpentine
- Paint solvents
- Carbon tetrachloride
- Trichloroethylene
- Nitrobenzene
- Hydrochloric acid 37%, 93°C
- Tetrahydrofuran
- Toluene
- Xylene
7 Type Designation

IZ16E - 600 - 6 - xx.x - 0 - X

Series/Type:
IZ16E: Position Indicator with external Sensor

Version No.:
600 = Standard

Supply:
6 = pluggable screw clamps [2-pole, / 1 mm²] für 1,5V oder 3V

Sensor Cable:
(maximum 2m)

Cable Options:
0 = fixed Cable (Standard)
1 = pluggable via RJ45

Options:
CAP = with integrated battery backup capacitor without actual value loss
24V = for external supply 10...30 VDC

7.1 Available Variants

<table>
<thead>
<tr>
<th>Order Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IZ16E-600-6-xx,x-0</td>
<td>Screw clamps, fixed sensor cable outlet</td>
</tr>
<tr>
<td>IZ16E-600-6-xx,x-0-CAP</td>
<td>Screw clamps, fixed sensor cable outlet with backup capacitor (only for 1,5V)</td>
</tr>
<tr>
<td>IZ16E-600-6-xx,x-0-24V*</td>
<td>Screw clamps, fixed sensor cable outlet with 24V- power supply*</td>
</tr>
<tr>
<td>IZ16E-600-6-xx,x-1</td>
<td>Screw clamps, sensor cable connector</td>
</tr>
<tr>
<td>IZ16E-600-6-xx,x-1-CAP</td>
<td>Screw clamps, sensor cable connector, with backup capacitor (only for 1,5V!)</td>
</tr>
<tr>
<td>IZ16E-600-6-xx,x-1-24V*</td>
<td>Screw clamps, sensor cable connector, with 24V- power supply*</td>
</tr>
</tbody>
</table>

(* only on request) (xx.x = sensor cable length in meter)

Sensor- Standard-Cable-Length: 0.2 / 0.3 / 0.5 / 0.6 / 0.8 / 1.0 / 1.1 / 1.5 / 1.8 / 2.0 m
8 Type Designation Magnetic Tape

<table>
<thead>
<tr>
<th>Designation</th>
<th>MB20-25-10-1-R</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB20 -> Incremental magnetic tape</td>
<td></td>
</tr>
</tbody>
</table>

Pole Basic Division:

Pole basic Division with 100μm resolution:

25 = 2.5 mm pole division

Tape Width

Tape width in mm:

10 = 10 mm

Track Number:

Number of magnetic tracks:

1 = single track

Tape Structure:

Tape Structure:

R = Standard: Magnetic tape on inference material

(bonded with adhesive tape on the back side and enclosed decaled cover tape)

Optionen:

B = Without adhesive tape on inference side
C = Without cover tape enclosed
D = Without adhesive tape and cover tape (equivalent to option B+C)

8.1 Available Variants

<table>
<thead>
<tr>
<th>Order Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB20-25-10-1-R</td>
<td>Magnetic tape in the standard package with cover band and adhesive tape</td>
</tr>
<tr>
<td>MB20-25-10-1-R-B</td>
<td>Without tape on the back side/ with enclosed adhesive tape</td>
</tr>
<tr>
<td>MB20-25-10-1-R-C</td>
<td>With tape on the back side/ without cover band</td>
</tr>
<tr>
<td>MB20-25-10-1-R-D</td>
<td>Without tape on the back side/ without cover tape</td>
</tr>
</tbody>
</table>

Available lengths: 0.5m ... 70m
Order example: MB20-25-10-1-R / L=1.5m

ADVERT!

For technical reasons, the measurement cannot be directly carried to the end of the tape; there should always be a gap of 50mm to adhere to the cutting edge.

→ Tape length = Measuring length + 100 mm ←
9 Installation and Initial Start-up

ADVERT
Please read the operating instructions carefully before using this device! Installation instructions must be observed!
In case of damage caused by failure observing the installation instructions, the warranty will be invalidated.

The ELGO Electronic GmbH & Co. KG and the subsidiaries are not liable for injury to persons, property or financial loss, which can by faulty material on the device and / or incurred by the related components.
We assume no liability for damages!

The operator is obliged to take appropriate security measures and implement it.

The commissioning should only be performed by qualified and authorized by the operator and instructed personnel.

9.1 Operational Environment

WARNING!
Do not use the device in explosive or corrosive environments!

CAUTION!
The electrical connections are made by suitably qualified personnel in accordance with local regulations.

The device is designed for switchboard mounting. During the work on the switchboard, all components must be free of tension if the danger exists, that energized parts can be touched. (Finger protection)

Wiring may only be energized!

Thin wire cable strands are equipped with ferrule!

Before switching on all ports and connectors are to be reviewed!

The device must be mounted that it is protected against harmful environmental influences such as splashing water, solvent, vibration, shock and severe pollution and also the operating temperature is to maintain.
9.2 Interferences

If errors cannot be corrected with the following instructions please contact the manufacturer (see last page).

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device, connection cables and signal cables must not be installed directly next to interference, which have strong inductive or capacitive interference or strong electrostatic fields!</td>
</tr>
<tr>
<td>External interference can be avoided by a suitable cable routing.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal wires and cables are principally laid separately from the LASTSTROMLEITUNG and keep a safety distance of at least 0,5m to inductive or capacitive interference sources such as contactors, relays, motors, switching power supplies, clocked controllers, etc.!</td>
</tr>
<tr>
<td>If faults occur despite of compliance of all the described items above, it must proceed as follows:</td>
</tr>
<tr>
<td>1. Attachment of RC elements of contactor coils of AC contactors (e.g. 0.1 μF / 100Ω)</td>
</tr>
<tr>
<td>2. Attachment of free-wheeling diodes using DC inductors</td>
</tr>
<tr>
<td>3. Attachment of RC elements of individual motor phases (in the terminal box of the engine)</td>
</tr>
<tr>
<td>4. Do not connect safety ground and reference potential</td>
</tr>
<tr>
<td>5. Pre-connecting a mains filter on the external power supply</td>
</tr>
<tr>
<td>6. Use of sheet metal or metalized shielding housings</td>
</tr>
</tbody>
</table>

9.3 Installation of the Indicator

The mounting of the device in the front panel is achieved by four slide clips (“Snap-In Mounting”). For this purpose no tools or special tools are needed. With the help of a simple angle plate (not included in the delivery) a surface mounting is also possible. The IZ16E comes with a separate seal. The mounting with seal (optional) increases the protection class for splash water proof and dust protection.

9.4 Activating the device

After applying the operating voltage (e.g. inserting the battery), the device starts automatically.
9.5 Installation of the magnetic sensor

The magnetic sensor can be mounted by using 2 screws of the type M3 via the mounting holes (see section 6.3.1). For the allowable distance from the sensor to the magnetic tape surface please take a look in the technical data (see section 6.3.2).

Furthermore, the following maximum angular tolerances must be maintained on the entire measuring length:

The cable must be laid in such a way that there is no risk of damage as tension or bruise. If necessary, use a drag-chain or a protective tube and provide a strain relief.
9.6 Installation of the magnetic tape

NOTE External Magnetic Fields
The influence of the magnetic tape by magnetic fields is to be avoided! The magnetic tape should not come into direct contact with other magnetic fields (e.g. permanent magnets, holding magnets, electromagnets, magnetic stands)! Irreparable damage is likely to affect either the accuracy or even the function!

9.6.1 Processing note for the bonding

The included adhesive tapes are coated on both sides with a modified acrylic adhesive and stick well on clean, dry and smooth surfaces. They are characterized by a high initial tack and good adhesive strength to high- and low-energy surfaces (e.g. PE, PP), high shear and peel strength and a good humidity, UV and aging resistance. The surface should be very clean if the surroundings are very dirty.

NOTE Surface treatment
In order to guarantee an optimal adhesion all the anti-adhesive contaminants (e.g. oil, grease, dust, release agents, etc.) have to be removed by a residue evaporating solvent. Suitable for this are for example Ketones (acetone) or alcohols. Typical solvents for cleaning are a 50/50 Isopropyl alcohol/water-mixture or heptanes. LOCTITE or 3M offer such solvents as a substrate cleaner. Note if dealing with solvents necessarily respond the warning of the manufacturer!
For materials such as copper, brass, etc. the surfaces should be sealed to prevent oxidation.

Note Pressure
The strength of the adhesion is directly dependent on the contact, which the adhesive developed to the bonded surface. Therefore, sealing with the maximum possible pressure, aids such as pressure roller or roller are to recommend (Opt. pressure 4…5 kg/cm² adhesive surface).

NOTE Adhesive temperature
The best application (adhesive) temperature is between +18 °C and +30 °C. Avoid colder sticking surfaces than +10°C, because in this case the adhesive becomes too hard and perhaps a sufficient immediate adhesion might be difficult to achieve. After proper sticking the stability of the connection is ensured also when the temperature is below zero. Please use only the delivered magnetic tape.
9.6.2 Cutting and Sticking

Before starting the gluing, the magnetic tape and the cover band need to be cut to the exact length:

<table>
<thead>
<tr>
<th>Length of the magnetic tape = Measuring length + 100 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of the cover tape = Measuring length + 100 mm + Overlap*</td>
</tr>
</tbody>
</table>

ADVERT

In an unprotected environment, there is the danger that the cover band can be peeled!

Therefore:
- Use magnetic tape end caps or let the cover tape overlap* at the end of the tape and for example laterally fix with screws.
- Preferably, the magnetic tape should be stuck into a nut or aligned to an edge.

By bonding the magnetic tape, the markings on the tape and the sensor head are to be respected. Improper installation does not provide correct values. The mounting needs to be co-planar to the mounting area or the place you intend to measure. Ripples deteriorate the measurement accuracy!

Installation steps:

1. Clean the surface thoroughly
2. Remove the protective tape at the adhesive tape
3. Glue the tape with large pressure
4. Clean carefully the magnetic tape surface
5. Remove the protective sheet of the adhesive tape from the cover band
6. Stick the cover tape with large pressure
7. Secure the ends of the cover tape against detachment

TIP

By assembling a long magnetic tape the protective sheet of the adhesive tape should be only removed for a short section to fix the magnetic tape at the desired position. Then the protection can be removed slowly from the remaining length of the protective sheet under a simultaneous pressure of the tape.

ADVERT

A pre-glued magnetic tape is destroyed after removal and cannot be used again!
10 Structure and Function

The operation of the device is divided into the parameter level (see section 10.3), the operator level (see section 10.5) and the initialization level.

All operating parameters can be put in through the parameter level (see section 10.3.6).

At the operator level the basic functions are available (depending on the software version).

In the initialization level only the basic operations such as sensor calibration or resetting the unit will run on default parameters (company setting).

All entries are made solely on the 4 front-mounted buttons or keyboard shortcuts of those, the displays occur via the integrated LCD.

10.1 Overview-Display

The following display icons or segments of the LCD-display are used in this software version:

1. Segments for numeric and text display (including signs, decimal points, fraction display)
2. Symbols for units and display mode
3. Icons for active tool-offsets 1 ... 3
4. Battery-Status Icons
5. REF symbol: unit needs to be referenced

For different applications the symbol may be changed for the unit by parameter (P02), e.g. the °- symbol for angle measurement (see section 10.3.6).

The standardization of the indicator value must be done manually with the corresponding multiplication factor (P08) and the decimal point (P03) (see section 10.3.6).

In the Inch-mode an additional fraction display is available.
10.2 Key-Overview

The function of the keys in the parameter level is shown on the button in the dark box on the left below the function at the operating level is shown in the bright field size:

<table>
<thead>
<tr>
<th>Keys</th>
<th>Function at the operating level (see 10.5)</th>
<th>Function at the parameter level (see 10.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Base-keys for keyboard shortcuts</td>
<td>Parameter level enable/disable</td>
</tr>
<tr>
<td>Set</td>
<td>Fraction display in the Inch mode</td>
<td>Next digit (decades) select</td>
</tr>
<tr>
<td>Incr /</td>
<td>Incremental enable/disable</td>
<td>Increases the value by 1</td>
</tr>
<tr>
<td></td>
<td>Tool-offsets enable/disable</td>
<td>Sign change</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Keys</th>
<th>Function at the initialization level</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>If the device is activated the calibration is triggered</td>
</tr>
<tr>
<td>Incr /</td>
<td>If the device is activated the parameters are reset to factory settings and causes a calibration</td>
</tr>
</tbody>
</table>
10.3 Parameter Level

→ Adjusting settings

10.3.1 Activate the Parameter Level

Hold it for about 3 seconds/ then press each 1x

The parameter level is activated with this key. After about 3 seconds the display shows „P01“ for the first parameter. When the button is actuated again, the corresponding parameter value is displayed, which can then be changed. With the help of this all parameters are successfully selected.

10.3.2 Election of the Decade

1x pressed

With this key the decade will be advanced by a passage from left to right. The selected, changeable decade is flashing on the display.

10.3.3 Change Value

1x pressed

With this key the value in the selected decade is always increased by 1 (0…9 or 0/1)

10.3.4 Change Sign

With this key the sign can be changed for some parameters. (Negative sign is only possible if the value is not ZERO)

10.3.5 Leave Parameter Level

Press it for about 3 seconds in the parameter level

All parameters will be retentively stored in the internal flash memory when leaving the parameter level.
Parameter list

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
</table>
| **P01: AB** | System configuration:
A = 0: RF Transmission cyclic every 250 ms
A = 1: RF Transmission by pressing the button “SET”
B = 0: Counting positively
B = 1: Counting negatively | 0 |
| **P02: A** | Display mode (affect only the display of symbols!)
A = 0: mm-Mode / Display symbol “ mm “
A = 2: mm-Mode / Display symbol “ m “
A = 3: mm-Mode / Display symbol “ ° “
A = 4: mm-Mode / Display non symbol | 0 |
| **P03: A** | Decimal point (0 … 4) → only for mm-Mode | 2 |
| **P04** | Auto-Power-Off-Time (1…30 minutes)
0: Sleep Mode deactivated
-> Auto-Power-On at movement of the sensor or by pressing button “F” | 01 |
| **P05: ABC** | Key lock:
A: Key „Set“ (0= activated / 1= deactivated)
B: Key „Incr/Abs“ (0= activated / 1= deactivated)
C: Key „“ (0= activated / 1= deactivated) | 000 |
| **P08** | Multiplication factor (0,0001 … 9,9999) | 1,0000 |
| **P09** | Reference value (-9999999 … +9999999) | 0 |
| **P10** | Offset 1 (-9999999 … +9999999) | 0 |
| **P11** | Offset 2 (-9999999 … +9999999) | 0 |
| **P12** | Offset 3 (-9999999 … +9999999) | 0 |
| **P13: A** | Configuration Offset (0…3)
A = 0: offset cannot be activated
A = 1: offset 1 can be activated
A = 2: offset 1 & 2 can be activated
A = 3: offset 1 & 2 & 3 can be activated | 3 |
| **P20:** | RF – Channel (103…109) | 106 |
| **P21** | Display: RF Net Address (0..254) | xxx |
| **P22** | Display: RF Address (0..254) | xxx |
| **P23:** | Target RF Net Address (0…255) | 001 |
| **P24:** | Target RF Address (0…255) | 000 |
| **P90** | Interface 868 MHz
0: RF Transmission deactivated
1: RF Protocol Type A
2: RF Protocol Type B
3: RF Protocol Type C
4: RF Protocol IZBOX-A | 1 |
| **P99** | Indicator in the company version | x.xx |

Attention After changing the parameters P20, P23 or P24, the device must be disconnected for about 10 seconds from the power supply so that the parameters are taken on reboot!
10.4 Initialization Level

→ Resetting the parameter and calibration

10.4.1 Calibration

<table>
<thead>
<tr>
<th>ADVERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>The calibration is already factory-made and must not run again normally.</td>
</tr>
<tr>
<td>In a few cases a re-calibration of the device after the installation can achieve an advancement of the accuracy, because with a re-calibration the additional mounting factors (angular deviation, parallelism, etc.) are included.</td>
</tr>
<tr>
<td>Caution:</td>
</tr>
<tr>
<td>The magnetic sensor must be in the maximum distance range on the tape during the calibration.</td>
</tr>
</tbody>
</table>

⇒ Switch off the device (remove battery or remove plug)

Keep pressing the key

⇒ While pressing the key the device is turning on again

The sensor calibration is initiated and „CAL 0“ is displayed. The sensor now has to be moved slowly in a direction on the magnetic tape, the process of the calibration is shown by the display „CAL 1 … CAL 4“. After finishing the calibration the device will start automatically in the operator level.

If you receive an error code “ERROR 1… ERROR 10” after the calibration, then the installation of the sensor has to be verified and the calibration has to be repeated.

10.4.2 Load the Default Parameters and simultaneous Calibration

<table>
<thead>
<tr>
<th>ADVERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Already changed parameters will be overwritten by the default parameter! If it is necessary write down the setting before.</td>
</tr>
</tbody>
</table>

⇒ Switch off the device (remove battery or remove plug)

Keep pressing the key

⇒ While pressing the key the device is turning on again

All parameters are reset to factory settings. Furthermore the sensor calibration is triggered.
10.5 Function at the Operator Level

→ Working with the device

10.5.1 Actual Value to Reference

Keys 1x press at the same time

With this shortcut, the actual value (display value) on the adjustable reference value is set (in absolute mode only possible when the offset is not enabled). The reference value can be entered with the parameter P09.

10.5.2 Switching incremental or absolute

1x pressed

With this key the indicator is switched from absolute mode to incremental mode: → The display value is temporarily set to ZERO, the symbol “INC” appears in the display. Actuating the key again the absolute is activated and the symbol “ABS” is displayed.

10.5.3 Activation Offset Measurements

1x pressed

This key enables/disables each of the three adjustable offset dimensions (only possible in the absolute mode). In each case an offset is added to the display value.
The activation of an offset level is indicated by the symbols 1, 2 or 3.
The offset measurements can be entered in the parameter P10, P11 and P12. Additionally, parameters can be determined with P13, whether and how many offset measurements can be selected.

10.5.4 Fraction Display in the Inch-Mode

1x pressed

With this key the display can be changed in the Inch-mode (parameter P02 = 1) as follows:

1x key pressed: Display Inch- fraction display 1/64 Inch
1x key pressed: Display Inch- fraction display 1/32 Inch
1x key pressed: Display Inch- fraction display 1/16 Inch
1x key pressed: Inch- Decimal Display 0.001 Inch
Etc.
10.6 Radio Transmission

10.6.1 Necessary Adjustments

(See also at parameter list at chapter Fehler! Verweisquelle konnte nicht gefunden werden.)

Parameter P01, A: Adjustment – whether the radio Transmission should work via press a button or cyclic
Every 250 ms

Parameter P23: Adjustment of the Target Net Address of the receiver

Parameter P24: Adjustment of the Target Address of the receiver

Parameter P90: Adjustment of the Transmit-protocol

10.6.2 RF- Addressing

Example:

At the display IZ16E-600, the destination network address and the destination address of the recipient have to
be set by parameter P23 and P24. These addresses are shown on the label of the receiver.

Attention! After changing the parameters P20, P23 or P24, the device must be disconnected for about 10
seconds from the power supply so that the parameters are taken on reboot!

10.6.3 Manual Radio Transmission (P01 = 1x)

1x pressed

With this button, the current actual position (display value) transmitted by radio with the set protocol in P90, if
the device is not in sleep mode.

10.6.4 Automatic Radio Transmission (P01 = 0x)

In this configuration, the current actual position (indication value) is transmitted every 250 ms, with the set
protocol in parameter P90 if the device is not in sleep mode.

10.6.5 RF- Reception Control

A successful transmission is automatically acknowledged by the recipient. This is indicated by the symbol •.
The icon turns off automatically about 1 second after the last successful transmission.
10.6.6 RF- Transmission Protocol

Parameter P90 = 0: RF- Transmission deactivated

Parameter P90 = 1:

Protocol Position, Display-Value (Type A: ASCII)

<table>
<thead>
<tr>
<th>Start</th>
<th>Sign</th>
<th>Position</th>
<th>Position</th>
<th>Position</th>
<th>Position</th>
<th>Position</th>
<th>Position</th>
<th>Stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x02</td>
<td>0x..</td>
<td>0x..</td>
<td>0x..</td>
<td>0x..</td>
<td>0x..</td>
<td>0x..</td>
<td>0x03</td>
<td></td>
</tr>
</tbody>
</table>

Example: +123456,7 mm (+12345,67 mm)

Parameter P90 = 2:

Protocol Position, Display-Value (Type B: ASCII & Frame-Info)

<table>
<thead>
<tr>
<th>Start</th>
<th>Packet Type</th>
<th>Opcode</th>
<th>Data-Length_0</th>
<th>Data-Length_1</th>
<th>Checksum</th>
<th>Sign</th>
<th>Position</th>
<th>Position</th>
<th>Position</th>
<th>Position</th>
<th>Position</th>
<th>Position</th>
<th>Position</th>
<th>Status</th>
<th>Stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x02</td>
<td>0x59</td>
<td>0x81</td>
<td>0x09</td>
<td>0x00</td>
<td>0xE3</td>
<td>0x..</td>
<td>0x..</td>
<td>0x..</td>
<td>0x..</td>
<td>0x..</td>
<td>0x..</td>
<td>0x..</td>
<td>0x..</td>
<td>0x03</td>
<td></td>
</tr>
</tbody>
</table>

Example: +123456,7 mm (+12345,67 mm)

Parameter P90 = 3:

Protocol Position, Display-Value (Type C: Hex)

<table>
<thead>
<tr>
<th>MSB</th>
<th>MSB-1</th>
<th>MSB-2</th>
<th>LSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x..</td>
<td>0x..</td>
<td>0x..</td>
<td>0x..</td>
</tr>
</tbody>
</table>

LSB = 0,01 mm (-2147483648 2147483647)

Parameter P90 = 4:

Protocol Position, Display-Value (Type IZBOX_A: Hex)

<table>
<thead>
<tr>
<th>Start</th>
<th>Net-Address</th>
<th>Address</th>
<th>MSB</th>
<th>MSB-1</th>
<th>MSB-2</th>
<th>LSB</th>
<th>Status</th>
<th>Stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x02</td>
<td>0x..</td>
<td>0x..</td>
<td>0x..</td>
<td>0x..</td>
<td>0x..</td>
<td>0x..</td>
<td>0x03</td>
<td></td>
</tr>
</tbody>
</table>

LSB POSITION = 0.01 mm (-2147483648 2147483647)
11 Accessories

11.1 RF-MODUL 868MHz RS232

Technical Data:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply</td>
<td>+10…30 VDC (with inverse-polarity protection)</td>
</tr>
<tr>
<td>Supply connecting cable</td>
<td>Dragchain able / high flexible / 4-wired / shielded</td>
</tr>
<tr>
<td>Bending radius connecting cable</td>
<td>min. 25 mm</td>
</tr>
<tr>
<td>Length connecting cable</td>
<td>1 m (Standard) open cable end</td>
</tr>
<tr>
<td>Housing</td>
<td>Plastic ABS</td>
</tr>
<tr>
<td>Dimensions</td>
<td>55 x 51 x 28 mm (without Mounting plates on the side)</td>
</tr>
<tr>
<td>Mounting Holes</td>
<td>Distance: ca. 63 mm / Ø=4 mm</td>
</tr>
<tr>
<td>Interface</td>
<td>RS232</td>
</tr>
<tr>
<td>Interface Parameter</td>
<td>9600 Baud, 8 Data bits, 1 Stop bit, no Parity</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>0°C … +50°C</td>
</tr>
<tr>
<td>Stock Temperature</td>
<td>-10°C … +60°C</td>
</tr>
<tr>
<td>Protection Class</td>
<td>IP54</td>
</tr>
</tbody>
</table>

Pin Assignment signal cable:

<table>
<thead>
<tr>
<th>Colour</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>0V / GND / RS232_GND</td>
</tr>
<tr>
<td>Brown</td>
<td>+10…30 VDC</td>
</tr>
<tr>
<td>Red</td>
<td>RS232_RX ←</td>
</tr>
<tr>
<td>Orange</td>
<td>RS232_TX →</td>
</tr>
<tr>
<td>Blank</td>
<td>Shielding / Earth</td>
</tr>
</tbody>
</table>

Type Designation

<table>
<thead>
<tr>
<th>Type Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF-MODUL 868MHz RS232</td>
<td>Radio module with 1 m Signal cable, open cable end (Standard)</td>
</tr>
<tr>
<td>RF-MODUL 868MHz RS232-3m</td>
<td>Radio module with 3 m Signal cable, open cable end</td>
</tr>
</tbody>
</table>

ADVICE!
The RF-MODULE RS232 868MHz should be installed in an elevated position and should not be obscured by metal parts. It should be at least 1m distance to possible Interferences. The result of the range limit from the installation situation is necessary to check and may possibly be optimized by repositioning.
11.2 RF-MODUL 868MHz USB

Technical Data:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply</td>
<td>+4,75 V … + 5,25 V (via USB- Port)</td>
</tr>
<tr>
<td>Connection</td>
<td>USB 2.0 (Full-Speed)</td>
</tr>
<tr>
<td>Communication</td>
<td>Via virtual COM-Port</td>
</tr>
<tr>
<td>Interface Parameter</td>
<td>9600 Baud, 8 Data bits, 1 Stop bit, no Parity</td>
</tr>
<tr>
<td>Driver</td>
<td>USB- Driver for WIN-2000,-XP,-VISTA</td>
</tr>
<tr>
<td>Housing</td>
<td>Plastic</td>
</tr>
<tr>
<td>Dimensions (L x W x H)</td>
<td>68 x 29 x 11 mm (incl. connector)</td>
</tr>
<tr>
<td>Operation Temperature</td>
<td>0°C … +50°C</td>
</tr>
<tr>
<td>Stock Temperature</td>
<td>-10°C … +60°C</td>
</tr>
<tr>
<td>Installation</td>
<td>anyway</td>
</tr>
</tbody>
</table>

Type Designation: Description

<table>
<thead>
<tr>
<th>Type Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF-MODUL 868MHz USB</td>
<td>USB- Stick 868 MHz, with closure cap</td>
</tr>
</tbody>
</table>

ADVICE!

The RF-MODULE USB 868MHz should be installed in an elevated position and should not be obscured by metal parts. It should be at least 1 m distance to possible Interferences. The result of the range limit from the installation situation is necessary to check and may possibly be optimized by repositioning.
11.2.1 Driver Installation USB- Stick

File: TREIBER_RF-MODUL-USB_W2K_XP_S2K3_VISTA

Install: “AMBDriverInstaller.exe” and follow the onscreen instructions
till the installation is completed successfully.

Connection USB- Stick:
The USB stick is inserted for connection to a PC to an available USB port. Windows will automatically recognize
the newly connected device.

The Windows routine for assign of the driver will start automatically:
A. Select in the first window "No, not this time” and click “Next”
B. Select Install in the following window "Install from a list or specific location" and click "next".
C. Select in the next window "Do not search, but look for the driver to install" and click "next".
D. The next window shows a list of possible drivers. Select the entry “AMB2560/AMB8460 RF module USB
Stick” and click on "continue".
E. Confirm the subsequent warning message "Continue Anyway".
F. Confirm in the last window the end of installation with click on “Finish”.

If it is the first installation, then now opens a second time this process via the Windows routine and the points A-F have to be done again.

Serial Interface:
The driver then creates a virtual serial port. The interface parameters are set as supplied to 9600 baud, 8 data
bits, 1 stop bit, and no parity.

ADVICE!
For use with, for example an RS232 terminal program, the
corresponding (virtual) COM port of USB flash drives in Windows
Device Manager can be determined.
11.3 Battery Holder

Assembly version:

Open version:

<table>
<thead>
<tr>
<th>Order Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery holder-Set 1xC Assembly</td>
<td>inclusive Battery holder (Type C), Battery and 2x cable shoes</td>
</tr>
<tr>
<td>Battery holder-Set 1xC Open</td>
<td>inclusive Battery holder (Type C), Battery and 2x cable shoes</td>
</tr>
</tbody>
</table>
11.4 Cover Band individual

Drawings see section 6.4.4.

<table>
<thead>
<tr>
<th>Order Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB-20-10-01-14404 (AB10)</td>
<td>Cover band, 10mm width, single with double-sided adhesive tape</td>
</tr>
</tbody>
</table>

11.5 Aluminium Guiding Rail

![Aluminium Guiding Rail Diagram]

<table>
<thead>
<tr>
<th>Order Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS-20.25-xxxx (xxxx = Length in mm)</td>
<td>Aluminium rail with pre-glued magnetic tape MB20-25-10-1-R</td>
</tr>
<tr>
<td>FS-xxxx (xxxx = Length in mm)</td>
<td>Aluminium rail with 2 slots for embedding a 10 mm or a 20 mm wide magnetic tape. Without magnetic tape!</td>
</tr>
</tbody>
</table>

The guiding rail is available up to a maximum length of 2000 mm.

11.6 Guiding Wagon for Guiding Rail

It is the ideal complement to the guiding rail.

![Guiding Wagon for Guiding Rail Image]

<table>
<thead>
<tr>
<th>Order Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW-20.60</td>
<td>Guiding wagon for a guiding rail made of special plastic (dimensions: L x W x H = 80 x 48 x 33mm)</td>
</tr>
</tbody>
</table>
11.7 Magnetic Tape End Cap

The magnetic tape end cap is offering the optimal protection against the peeling of the magnetic tape/cover band.
Furthermore, in the working area the risk of injury by any existing sharp edges is minimized with the end caps.

<table>
<thead>
<tr>
<th>Order Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB End Cap 10mm / single</td>
<td>Single end cap, loosely packed</td>
</tr>
<tr>
<td>MB End Cap 10mm / SET</td>
<td>Set, consisting of 2 end caps and 2 countersunk screw M3X8 Philips packed in mini-grip-bags</td>
</tr>
</tbody>
</table>
12 Interferences
The following chapters describe possible causes for malfunction and the instructions to correct them.

12.1 Safety

WARNING!
Risk of injury by improper disposal!

Improper disposal can lead to severe disturbance to persons or property.

Therefore:
- Any work to rectify the fault may be performed only by qualified and adequately instructed personnel
- Before starting to work ensure sufficient space of mounting
- Paying attention to orderliness and to cleanliness at the mounting area, loose parts and tools, which are lying on each other or lying around, are sources of accidents

If components need to be replaced:
- Pay attention of proper mounting of the spare parts
- Install all fasteners correctly again
- Before restarting ensure that all covers and guards are properly installed and working correctly

12.2 Restarting after fault Clearance

Once you resolve the failure:

1. Where appropriate, reset the emergency stop device
2. Where appropriate reset the fault message to the parent system
3. Ensure that there are no persons in the danger zone
4. Proceed in accordance with the instruction of section 9
13 Maintenance

The device is maintenance-free.

<table>
<thead>
<tr>
<th>WARNING!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazard due to improper maintenance!</td>
</tr>
<tr>
<td>Improper maintenance can result to serious personal injury or property damage.</td>
</tr>
<tr>
<td>Therefore: Maintenance work must be performed only by qualified and authorized personnel.</td>
</tr>
</tbody>
</table>

14 Cleaning

<table>
<thead>
<tr>
<th>WARNING!</th>
</tr>
</thead>
<tbody>
<tr>
<td>The system should be cleaned with damp cloth, do not use aggressive cleaning products.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADVERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>The surface of the magnetic tape can be cleaned with string contamination by dust, shavings, humidity, etc. occasionally with a soft cloth.</td>
</tr>
<tr>
<td>With a strong pollution of the magnetic tape by magnetic metal shavings measurement errors or malfunctions are possible.</td>
</tr>
</tbody>
</table>
15 Index

868MHz Specification ..17
Activation ..25
Aluminum Guiding Rail..41
Angle Measurement... 11, 12
Applications ..11
Battery Change..16
Battery Holder ...40
Calibration..33
Cause of Risks..6
Cleaning ..44
Content ..2
Conventional Use...7
Cover band ...41
Cutting & Sticking MB..28
Demounting ..5
Dimension Magnetic Tape20
Dimensions...13
Dimensions Magnetic Sensor18
Disposal ... 5
Document History ...45
Driver Installation USB- Stick39
Explanation of Symbols ...4
front panel thickness..13
Front View ..13
General ..4
Guarantee ..5
Guiding Wagon ..41
Identification .. 13, 20
Initial Start-up..24
Installation...24
Installation Magnetic Sensor26
Interferences ...25, 43
Key Overview ..30
Magnetic Tape ..19
Maintenance ...44
Operational Environment ...24
panel cut out ..13
Parameter Level ...31
Parameter List..32
Product Features ...9
Protective Equipment..6
Radio Transmission ...35
resolution...9
Restart...43
Safety... 6
Safety Instructions...4
Storage...8
Structure and Function...29
Tape End Cap ...42
Technical Data .. 13, 15
Transport... 8
Type Designation...22, 23
Variants ... 22, 23
Warranty .. 5

Document History

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Author</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>22.03.10</td>
<td>CN</td>
<td>Translation</td>
</tr>
</tbody>
</table>

Document no.: 799000595 / Rev. 0
Document name: IZ16E-600-E_12-10
Subject to change - © 2010
ELGO Electronic GmbH & Co. KG